16 research outputs found

    Chromosome Tips Damaged in Anaphase Inhibit Cytokinesis

    Get PDF
    Genome maintenance is ensured by a variety of biochemical sensors and pathways that repair accumulated damage. During mitosis, the mechanisms that sense and resolve DNA damage remain elusive. Studies have demonstrated that damage accumulated on lagging chromosomes can activate the spindle assembly checkpoint. However, there is little known regarding damage to DNA after anaphase onset. In this study, we demonstrate that laser-induced damage to chromosome tips (presumptive telomeres) in anaphase of Potorous tridactylis cells (PtK2) inhibits cytokinesis. In contrast, equivalent irradiation of non-telomeric chromosome regions or control irradiations in either the adjacent cytoplasm or adjacent to chromosome tips near the spindle midzone during anaphase caused no change in the eventual completion of cytokinesis. Damage to only one chromosome tip caused either complete absence of furrow formation, a prolonged delay in furrow formation, or furrow regression. When multiple chromosome tips were irradiated in the same cell, the cytokinesis defects increased, suggesting a potential dose-dependent mechanism. These results suggest a mechanism in which dysfunctional telomeres inhibit mitotic exit

    UV microbeam irradiations of the mitotic spindle. II. Spindle fiber dynamics and force production.

    Get PDF
    Metaphase and anaphase spindles in cultured newt and PtK1 cells were irradiated with a UV microbeam (285 nM), creating areas of reduced birefringence (ARBs) in 3 s that selectively either severed a few fibers or cut across the half spindle. In either case, the birefringence at the polewards edge of the ARB rapidly faded polewards, while it remained fairly constant at the other, kinetochore edge. Shorter astral fibers, however, remained present in the enlarged ARB; presumably these had not been cut by the irradiation. After this enlargement of the ARB, metaphase spindles recovered rapidly as the detached pole moved back towards the chromosomes, reestablishing spindle fibers as the ARB closed; this happened when the ARB cut a few fibers or across the entire half spindle. We never detected elongation of the cut kinetochore fibers. Rather, astral fibers growing from the pole appeared to bridge and then close the ARB, just before the movement of the pole toward the chromosomes. When a second irradiation was directed into the closing ARB, the polewards movement again stopped before it restarted. In all metaphase cells, once the pole had reestablished connection with the chromosomes, the unirradiated half spindle then also shortened to create a smaller symmetrical spindle capable of normal anaphase later. Anaphase cells did not recover this way; the severed pole remained detached but the chromosomes continued a modified form of movement, clumping into a telophase-like group. The results are discussed in terms of controls operating on spindle microtubule stability and mechanisms of mitotic force generation

    Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method

    No full text
    C1 - Journal Articles RefereedThe apicoplast and mitochondrion of the malaria parasite Plasmodium falciparum are important intracellular organelles and targets of several anti-malarial drugs. In recent years, our group and others have begun to piece together the metabolic pathways of these organelles, with a view to understanding their functions and identifying further anti-malarial targets. This has involved localization of putative organellar proteins using fluorescent reporter proteins such as green fluorescent protein (GFP). A major limitation to such an approach is the difficulties associated with using existing plasmids to genetically modify P. falciparum. In this paper, we present a novel series of P. falciparum transfection vectors based around the Gateway recombinatorial cloning system. Our system makes it considerably easier to construct fluorescent reporter fusion proteins, as well as allowing the use of two selectable markers. Using this approach, we localize proteins involved in isoprenoid biosynthesis and the posttranslational processing of apicoplast-encoded proteins to the apicoplast, and a protein putatively involved in the citric acid cycle to the mitochondrion. To confirm the localization of these proteins, we have developed a new immunofluorescence assay (IFA) protocol using antibodies specific to the apicoplast and mitochondrion. In comparison with published IFA methods, we find that ours maintains considerably better structural preservation, while still allowing sufficient antibody binding as well as preserving reporter protein fluorescence. In summary, we present two important new tools that have enabled us to characterize some of the functions of the apicoplast and mitochondrion, and which will be of use to the wider malaria research community in elucidating the localization of other P. falciparum proteins
    corecore